线性系统的迭代求解器是部分微分方程(PDE)的数值解的关键组件。过去几十年来一直进行了深入的研究,例如雅各比,高斯 - 塞德尔,共轭梯度,跨部方法及其更高级的变体,但仍有迫切需要开发更快,更强大和更可靠的求解器。基于操作员回归的科学深度学习的最新进展,我们提出了一种提示,即用于微分方程的混合,迭代,数值和可转移的求解器。提示结合了标准放松方法和深层操作员网络(DeepOnet)。与标准数值求解器相比,提示能够为宽类微分方程提供更快的解决方案,同时保留接近机器零的精度。通过本本征分析,我们发现提示中的单个求解器靶向本征谱系中的不同区域,从而导致均匀的收敛速率,从而使混合求解器的整体表现出色。此外,提示适用于多维方程,并且在计算域和可转移到不同离散化方面具有灵活性。
translated by 谷歌翻译
逆源问题对于声学,地球物理学,非破坏性测试等的许多应用是至关重要的。传统成像方法受到分辨率极限的影响,防止源的区别比发射的波长小于发射的波长。在这项工作中,我们提出了一种基于物理信息的神经网络来解决源重新关注问题的方法,构建了一个新颖的损失项,该损失术语促进了网络的超解决能力,并基于波传播的物理。我们证明了在二维矩形波导中通过沿垂直横截面的波场记录的测量值进行成像的设置中的方法。结果表明,即使将彼此靠近时,该方法的能力也可以高精度近似于源的位置。
translated by 谷歌翻译
Labeling large image datasets with attributes such as facial age or object type is tedious and sometimes infeasible. Supervised machine learning methods provide a highly accurate solution, but require manual labels which are often unavailable. Zero-shot models (e.g., CLIP) do not require manual labels but are not as accurate as supervised ones, particularly when the attribute is numeric. We propose a new approach, CLIPPR (CLIP with Priors), which adapts zero-shot models for regression and classification on unlabelled datasets. Our method does not use any annotated images. Instead, we assume a prior over the label distribution in the dataset. We then train an adapter network on top of CLIP under two competing objectives: i) minimal change of predictions from the original CLIP model ii) minimal distance between predicted and prior distribution of labels. Additionally, we present a novel approach for selecting prompts for Vision & Language models using a distributional prior. Our method is effective and presents a significant improvement over the original model. We demonstrate an improvement of 28% in mean absolute error on the UTK age regression task. We also present promising results for classification benchmarks, improving the classification accuracy on the ImageNet dataset by 2.83%, without using any labels.
translated by 谷歌翻译
异常检测方法努力以语义方式发现与规范不同的模式。这个目标是模棱两可的,因为数据点与规范不同的属性不同,例如年龄,种族或性别,可能被某些操作员认为是异常的,而其他操作员可能认为这种属性无关紧要。从先前的研究中断,我们提出了一种新的异常检测方法,该方法使操作员可以将属性排除在被认为与异常检测相关的情况下。然后,我们的方法学习了不包含有关滋扰属性的信息的表示形式。使用基于密度的方法进行异常评分。重要的是,我们的方法不需要指定与检测异常相关的属性,这在异常检测中通常是不可能的,而是只能忽略的属性。提出了一项实证研究,以验证我们方法的有效性。
translated by 谷歌翻译